
Data Logging Service (DLS)

Version 1.2

Florian Pose, fp@igh-essen.com

Ingenieurgemeinschaft

The “DLS” is a data logging system capable of collecting high-frequency data over a
long period and storing them in a highly compressed fashion. Its objective is to
grant the user unrestricted, high-performance access to the acquired data at all

times: whether the overview for a whole year or just a tiny variation in a fraction of
a second is needed.

Essen, September 25, 2023

Revision 1.5.0-13-g4146715

fp@igh-essen.com

ii

Contents

1. General 1
1.1. Principles of data acquisition . 1
1.2. Measurement jobs . 1
1.3. Data storage . 2
1.4. Tools . 2

2. The DLS daemon (dlsd) 3
2.1. The dlsd parent process . 3

2.1.1. Behaviour of the dlsd parent process 3
2.1.2. Spooling . 4
2.1.3. Signal processing . 5

2.2. The dlsd acquisition process . 5
2.2.1. Behaviour of the acquisition process 5
2.2.2. Generation of meta data . 6
2.2.3. Communication with the data source 7
2.2.4. Limitation of the data volume (quota) 9
2.2.5. Messages from the data source 10
2.2.6. Signal processing . 11

3. The DLS data directory 13
3.1. Root directory . 14
3.2. Job directories . 14
3.3. Channel directories . 15
3.4. Chunk directories . 16
3.5. Data directories . 16
3.6. Messages directory . 18

4. The DLS Manager 21
4.1. Main dialog . 21

4.1.1. Display features . 22
4.1.2. Interaction features . 22

4.2. The “Create job” and “Change job” dialogs 22
4.2.1. Display features . 23
4.2.2. Interaction features . 23

4.3. The “Edit job” dialog . 24
4.3.1. Display features . 24

iii

Contents

4.3.2. Interaction features . 25
4.4. The “Add channels” dialog . 25

4.4.1. Display features . 25
4.4.2. Interaction features . 26

4.5. The “Edit channels” dialog . 26
4.5.1. Display features . 27
4.5.2. Interaction features . 27
4.5.3. Simultaneous editing of several channel specifications 28

5. The DLS View 29
5.1. Main dialog . 29

5.1.1. Display features . 29
5.1.2. Interaction features . 30

5.2. The “Export. . . ” dialog . 31
5.2.1. Display features . 31
5.2.2. Interaction features . 31

6. Compression methods 35
6.1. Compression with the ZLib . 35
6.2. Compression with the MDCT . 36

6.2.1. MDCT . 36
6.2.2. Quantisation . 37
6.2.3. Transposition . 37
6.2.4. MDCT via FFT (Fast Fourier Transform) 37

6.3. Compression through quantisation . 38
6.3.1. Quantisation . 38
6.3.2. Differentiation . 38
6.3.3. Transposition . 38

A. Installation of the DLS 39
A.1. System requirements . 39
A.2. Installation . 39
A.3. How to set up DLS as a service . 40

B. Data types 41

C. PID files 43

D. Command-line parameters 45
D.1. dlsd . 45
D.2. Init-Script . 45
D.3. dls status . 45
D.4. dls ctl . 45
D.5. dls view . 46

iv

Contents

D.6. dls . 46
D.6.1. dls list . 46
D.6.2. dls export . 46

D.7. dls quota . 47

Index 49

v

Contents

vi

1. General

1.1. Principles of data acquisition

The “Data Logging Service” (hereinafter DLS) is a data logging system that is not
only able to collect, compress and store any type of measured data over a long period,
but also to display them quickly whenever required.

Prerequisite for a data logging process is a data source, which provides the measured
data. In this case it is a server that provides the measured data of the rt lib, developed
by the IgH, via the network. The communication with the data source is described
in subsection 2.2.3.

All data to be delivered are organised in channels . A channel is the abstraction of
a measurable physical quantity provided by the data source. The properties of a
channel are the unit, the maximum sampling frequency and the data type.

The DLS can connect to the data source and thus interrogate the information via the
provided channels. In the same way it is then capable of requesting and receiving the
measured data for specific channels.

1.2. Measurement jobs

The DLS acquires data by means of so-called measurement jobs . They comprise
general specifications for data acquisition along with the list of the channels to be
included and their specifications. A measurement job is always bound to a certain
data source. It is possible that any number of measurement jobs is available at the
same time.

Data from different channels can simultaneously be acquired within the scope of one
measurement job. For this purpose, every channel to be included must be provided
with a so-called channel specification. This summarises the conditions, under which
data from a certain channel are to be acquired and stored. It includes the sampling
frequency, the block size, the meta data to be acquired (see subsection 2.2.2), the
meta reduction ratio and the compression method.

1

1. General

1.3. Data storage

The acquired data are stored in the DLS data directory together with the acquisition
specifications, time and channel information and sorted according to measurement
jobs. This is the current directory by default. If another storage location is desired,
this fact can be communicated to the programs of the DLS package either via the com-
mand line parameters (option -d) or stored in the environment variable $DLS DIR.
The search order is always: Parameter – environment variable – current directory.

It is certainly possible that several DLS data directories exist at a time, which, how-
ever, must be served by different instances of the DLS daemon (see section 2.1).

A detailed description of the DLS data directory’s structure and the data contained
therein can be found in chapter 3.

1.4. Tools

DLS Manager Measurement jobs can be edited by means of a graphical user in-
terface, the DLS Manager (see chapter 4). It allows the user to create new
measurement jobs and adapt existing ones. This can be done during a data
acquisition. The user can also see whether data acquisition is currently being
performed.

DLS View A graphical tool DLS View is provided to view the data (see chapter 5).
The user can have any of the channels involved in a measurement job be dis-
played above a common time scale. Here, it is also possible to navigate in the
time window and to determine individual data values.

dls The command line tool dls recognises commands to view and export data that
have already been acquired. See section D.6 for a list.

Init-Script An init script is provided for starting and stopping the dlsd and all asso-
ciated services. It recognises the parameters start, stop, restart and status.
The configuration of the service is made via a sysconfig file which contains all
required variables. It is recommended to export the included variables via the
profile script, which is provided as well, and to thus make them accessible to all
users.

dls status The Script dls status serves for the general monitoring of the data acqui-
sition. It is a command line tool that can display the basic readiness for data
logging for a certain DLS data directory. It displays whether the DLS parent
process is running, which measurement jobs are available and whether for these
jobs the corresponding DLS acquisition processes are running.

2

2. The DLS daemon (dlsd)

The DLS daemon (short: dlsd) serves for the entire data acquisition and data storage.
It is a process that is running in the background (without being connected to a console)
and is bound to a specific DLS data directory. It must always be running when data
are to be acquired.

A representation of the entire system architecture can be seen in Figure 2.1.

dlsd

FS
DLS Manager

DLS Viewer

TCP/IP

TCP/IP

Acquisition−Server

Data source #n

Data source #1

Measuring computer #n

Measuring Computer #1

Figure 2.1.: Architecture

2.1. The dlsd parent process

A dlsd process started by the user or system will monitor the measurement jobs. It
is then called dlsd parent process. In the memory it holds available a list of dedicated
copies of the job specifications existing in the DLS data directory, which additionally
contain information on the associated acquisition processes.

Every started parent process must work in a different DLS data directory. This is
ensured by implemented protective mechanisms (PID files , see Appendix C).

2.1.1. Behaviour of the dlsd parent process

Initially, the parent process reads in all measurement job specifications in the DLS
data directory and fork a child for every active measurement job (dlsd acquisition
process, see section 2.2), which will thereafter serve for the data acquisition of the
measurement job concerned. Subsequently, it performs the following tasks in a defined
time interval:

3

2. The DLS daemon (dlsd)

• Check whether signals have been received in the meantime. That can happen,
for instance, when the dlsd is to be terminated or when one of the acquisition
processes was terminated (see subsection 2.1.3).

• Check the spooling directory for new entries. If in the spooling directory one or
more files are found, they are assessed as spooling information and processed as
described in subsection 2.1.2.

• Check of the acquisition processes. The parent process shall ensure that for
every active measurement job there will always run a corresponding acquisition
process.

2.1.2. Spooling

A spooling process helps to ensure a smooth operational sequence when measurement
jobs are changed during data acquisition. Since the measurement jobs are organised
in files, without such a process the requirement that a specifications file is not simul-
taneously read by the dlsd while the user is writing would not safely be met. This
might result in processing errors.

Therefore, the DLS data directory contains a subdirectory spool. The dlsd parent
process empties this directory when starting and will then, once only, enter all job
specifications. Thereafter, it will access the job specifications for reading them only
when accordingly and explicitly requested by a spooling command.

For the dlsd, a valid spooling command is a file with any name in the spooling direc-
tory, which contains only an ASCII-coded job ID (positive integer). This ID enables
the dlsd to decide what to do:

• If it does not yet know a job with this ID, it will assume that the job has been
newly created. It will import it and start the corresponding acquisition process,
if required.

• If, however, it knows a job with this ID and the file with the job specifications
exists (job.xml see chapter section 3.2), the specifications will be newly read in
and the acquisition process will be started, stopped or notified, as appropriate.

• If it knows a job with this ID but the specifications file does not exist, the
dlsd will assume that the job was deleted. It will terminate a possibly running
acquisition process and cancel the specification from its list.

Generally, the spooling file is deleted to confirm that the new information has been
received. If an error occurs during processing, the file will be left in the spooling
directory.

4

2.2. The dlsd acquisition process

2.1.3. Signal processing

The following signals are processed by the dlsd parent process:

SIGCHLD A child process was terminated. This may have different reasons:

• The process was explicitly terminated and has the return value 0 (no error).
In that case it will be restarted with the next check, because the process
was not terminated according to the specifications and the data acquisition
must be continued as soon as possible.

• The process has detected an internal error and has terminated itself with
the return value −1. This will be recognised accordingly by the parent
process so that the process will not be restarted. The user, however, will not
receive an explicit warning that the data acquisition has stopped running.
A message will only be sent to the syslogd .

• The process had a timing error and has terminated itself with the return
value −2. The process will be restarted by the parent process after a
defined time span has elapsed.

SIGINT/SIGTERM The dlsd is to be terminated. The parent process will forward
the signal to all of its child processes, wait until they have stored their data and
then terminate itself with the return value 0 (no error).

SIGSEGV and others These signals are monitored for safety and treated alike by
the dlsd parent process and acquisition process. When such a state occurs,
the process will leave a file with the name error <PID> in the DLS data direc-
tory which contains information about the signal received and shortly thereafter
terminate itself with the return value −3.

2.2. The dlsd acquisition process

The acquisition process that was split off the dlsd parent process serves for the com-
munication with the data source, the compressing of the received data and the storing
of the compressed data on the hard disk. It is associated with a specific measurement
job that was assigned to it by the dlsd parent process at the start. This measurement
job is uniquely identified via the DLS data directory and the corresponding mea-
surement job ID. All data referring to this job are stored there in the subdirectory
job<ID> (see chapter 3).

2.2.1. Behaviour of the acquisition process

The dlsd acquisition process will first import the specifications of its measurement job
from the central specifications file job<ID>/job.xml and then connect via TCP/IP

5

2. The DLS daemon (dlsd)

with the data source indicated there (description of the communication protocol, see
subsection 2.2.3).

For every channel the acquired measured data go to a so-called block buffer. When
this is full, the data will be block-wise compressed, stored and indicated with the time
stamp of the first data value in the block. The advantage of this approach is that
the compression does not require a streaming process and the individual data values
will be clearly identifiable later on. The size of this data block (and thus of the block
buffer) can be defined by the user in the channel specifications.

In this connection, a sequence of data blocks that is continuous in terms of time is
designated as chunk . This contains those measured data of an individual channel
that have been acquired in a continuous, completed time domain. It combines the
underlying channel specification with the real properties of the respective channel of
the data source and the ultimately acquired data (see section 3.4).

2.2.2. Generation of meta data

In order to provide a fast preview even with large amounts of data, the DLS acquisition
process does not only store the (“generic”) data values that were received from the
data source but additionally saves data that have been aggregated over certain time
spans, so-called “meta data”. The latter exist in various reduction levels, the so-called
“meta levels”. A read process can then - according to the desired resolution - decide,
which meta level it is going to use and thus load the data very quickly.

Mathematically, this means that the complexity of the algorithm for the loading of
n data values of a time span ∆t and a sampling frequency f , where: n = ∆t · f no
longer is O(n), i. e. linear dependent on the number of underlying data values in the
period, but remains dependent only on the number of supporting points desired in
the current resolution, which again is independent of the number of underlying data
values. Accordingly, in terms of time and storage requirement, the algorithm is of
order O(1).

To generate the (redundant) meta data, in the dlsd acquisition process a so-called
meta buffer is provided in parallel with the block buffer. This buffer has a capacity
for u data values with u being the so-called meta reduction ratio, which the user can
define in the channel specifications. The meta reduction ratio applies for all levels.
When the meta buffer is full, from the u generic data values a “meta data value” of
meta level 1 will be generated and stored there in a block and a meta buffer. For
these buffers again the same rules apply as for the level of the generic data, i. e. the
meta levels are generated in “cascaded” fashion. Accordingly, storage space for a new
level will be reserved only when the first meta value of this level is provided.

There are different types of meta data, which can also be generated simultaneously.
At present the following types are supported:

6

2.2. The dlsd acquisition process

Mean values (“mean”, mask bit 0) A meta value of level n is the arithmetic means
value of u values of level n− 1.

Minima (“min”, mask bit 1) A meta value of leveln is the smallest of u values of level
n− 1.

Maxima (“max”, mask bit 2) A meta value of level n is the largest of u values of
level n− 1.

Which types of meta values are ultimately to be generated during the data acquisition,
can be determined by the user in the channel specifications with the so-called meta
mask. This is produced by the bit-wise OR operation of the indicated mask bits.
(Examples: “Mean values, minima and maxima” corresponds to meta mask 7, “only
mean values” corresponds to meta mask 1, and “minima and maxima” corresponds
to meta mask 6).

It is almost always the case that when completing a chunk less than u values remain
on a level. From these values no further meta value will be generated since when
being displayed this data value would in all likelihood be narrower than one pixel.
The values remaining in the meta buffers will consequently be discarded.

2.2.3. Communication with the data source

The communication with the data source is effected via the protocol for the rt lib (ver-
sion ≥ 2.7) from IgH based on XML. The connection to the data source is established
via TCP/IP (port 2345).

Identification of the data source After the connection has been established, first
a <connected>-Tag is awaited, which as name attribute must contain the value MSR
(German

”
Messen – Steuern – Regeln“, which means “instrumentation and control”).

The coded version of the data source software in the version attribute is checked for
compatibility with the current dlsd version. Additionally, the <connected>-Tag may
contain an arch attribute, which contains the architecture (“endianness”) of the data
source and thus of the binary data sent. Potential values are big (for “big endian”)
or little (for “little endian”). If no arch attribute exists, the source architecture is
assumed to be “little endian” and a warning is issued.

Determination of the maximum sampling frequency When the <connected>-Tag
sent from the data source has been received and verified, the acquisition process will
first query the MSR parameter /Taskinfo/Abtastrate (sampling frequency) and then
wait for the answer. This value (the maximum sampling frequency of the data source)
will later be needed for checking the plausibility of the channel specifications and for
calculating the reduction ratio of the sampling frequencies.

7

2. The DLS daemon (dlsd)

Readout of all channels Subsequently, the complete list of the channels provided
by the data source will be requested with an <rk> command. The response of the
data source must begin with an introductory <channels>-Tag, which is followed by
the individual channels, which are described in a <channel>-Tag each. The end of
the channel list is again marked with a </channels >-Tag.

Example of a response of the data source to an <rk > command:

<channels >

<channel name ="/ Time" unit="s" alias ="" index ="0" ←↩
typ="TDBL" bufsize ="50000" HZ ="10000" value ="1112814601.3209"/ >

<channel name ="/ Taskinfo/Controller_Execution_Time" unit="us" ←↩
alias ="" index ="6" typ=" TUINT" bufsize ="50000" HZ ="10000" value ="22"/ >

<channel name ="/ Taskinfo/Controller_Call_Time" unit="us" alias ="" ←↩
index ="7" typ=" TUINT" bufsize ="50000" HZ ="10000" value ="99"/ >

<channel name ="/ Istwert/Kraft" unit="N" alias ="" index ="9" ←↩
typ="TDBL" bufsize ="50000" HZ ="10000" value =" -0.6745"/ >

<channel name ="/ Istwert/Druck" unit="bar" alias ="" index ="12" ←↩
typ="TDBL" bufsize ="50000" HZ ="10000" value ="0.1372"/ >

</channels >

Of the attributes in the <channel>-Tag the following will be saved for later use:

name – Channel name (unique)

unit – Unit of the channel (is stored as a string, optional)

index – The position of the channel within the list. This will later also be used as an
identifier for a channel directory within the DLS data directory (see chapter 3).

typ – Data type. This must be one of the known data types from the table in
Appendix B, in order to enable the processing of any data received later on.

bufsize – Size of the circular buffer within the data source. This will later be used
for checking the plausibility of a given sampling frequency:

BlockSize · Reduction
!
≤ BufferSize

2

HZ - Channel-specific, maximum sampling frequency.

All of these channel information details are filed in a list in the memory of each
acquisition process and will be used for the plausibility checks whenever adding or
changing a channel specification.

Start of data acquisition When the acquisition process recognises the channels list,
the data acquisition will be started (unless it is required that previously the trigger
parameter is waited for). This is done via the <xsad> command, which is sent once
for each channel to be acquired. Attributes of the command are:

channels - Contains the index of the queried channel in the list of all channels,

8

2.2. The dlsd acquisition process

reduction - the (integer) scaling-down factor of the maximum sampling frequency of
the channel to describe the absolute sampling frequency,

blocksize - the number of values to be sent in a block (this value being completely
independent of the block size in the channel specification), and

coding - the coding of the data that is currently defined on Base64.

A typical command for starting the data acquisition of a channel could therefore look
as follows:

<xsad channels ="7" reduction ="100" blocksize ="1000" coding =" Base64"/>

Receipt of data The acquisition process now waits for a <data> tag that is the
beginning of a block of channel data tags. This tag must contain a time attribute
corresponding to the time stamp of all last data values each in the following channel
data tags. These are expected to be <F>-Tags, which contain the last measured
data of a single channel each and have the attributes c (channel index) and d (coded
measured data). The last <F>-Tag must be followed by a </data>-Tag tag that will
return the acquisition process to the waiting state.

Change of channel specifications If a channel specification is changed during data
acquisition, the acquisition process will send another <xsad>-Tag, which in addition
to the new channel specifications contains an id attribute representing a (connection-
wide) unequivocal command identifier. If the data source has accepted the channel
specifications and if the next data of the channel involved definitively comply with
the new specifications, the data source is expected to send an <ack>-Tag tag before-
hand, the attribute of which is the command ID of the respective <xsad>-Tags. The
acquisition process, too, will then finally be changed to comply with the new channel
specifications.

2.2.4. Limitation of the data volume (quota)

The dlsd knows mechanisms to limit the required storage space for the acquired data
of a measurement job. Different criteria are supported for any exceeding of these
limits:

Data quota The entire volume of the job directory in the file system must not exceed
a certain limit.

Time quota The time range of all the acquired data of a measurement job shall not
exceed a defined width.

9

2. The DLS daemon (dlsd)

If the user has activated one or more quotas and the total set of acquired data exceeds
one or more of the criteria, the oldest chunk in each case will be removed, until the
criteria are no longer met. The newest chunk of each channel, however, will never be
removed as here a data acquisition might just take place.

The task of deleting is undertaken by the DLS quota daemon. It must always run in
parallel to the dlsd as soon as in at least one job quotas are configured. Starting is
performed manually with:

$ dls quota

For command line parameters refer to section D.7.

Time

dlsddls_quota Chunk

Time quota

Figure 2.2.: Compliance with the time quota

Since the DLS quota daemon can always only remove complete chunks all at once, a
successive deletion would not be possible, if the acquired data of a channel consisted of
one single chunk only. Therefore, it must be ensured that always many small chunks
exist, even if the dlsd acquisition process has not been interrupted.

Hence, the dlsd acquisition process monitors the quota criteria for itself. With the
quota activated it makes sure that always sufficient individual chunks are produced
within the critical span (Figure 2.2). For this purpose it splits every set quota criterion
into equal portions and independently begins a new chunk whenever one of these finer
criteria is exceeded.

As the completion of a chunk may be very time-consuming, which is incompatible
with the real-time requirement of the dlsd acquisition process, a dedicated process is
generated for storing the remaining, acquired data. This “clean-up process” will now
store all the data of the current chunk, while the acquisition process simply discards
them and addresses the acquisition of the data of the newly started chunk. After
completion of the “old” chunk the clean-up process will quit automatically.

2.2.5. Messages from the data source

The data source can – in addition to the measured data – send messages at all times.
These messages contain notes of the user to be included in the data stream, warnings
or error conditions. Messages are of the following types:

10

2.2. The dlsd acquisition process

info - Information that is merely intended for the current acquisition process.

warn - A warning from the data source.

error - An error occurred in the data source.

crit error - An error rendering further operation difficult or impossible has occurred
in the data source.

broadcast - A message for all processes that are currently connected with the data
source.

A message is always sent by the data source as a single XML tag, whose title includes
the type of the message. Moreover, the title contains an attributetime indicating the
time stamp of the message in seconds and - according to the message - an attribute
text, which will not be evaluated any further by the dlsd.

A typical messages tag looks as follows:

<broadcast time ="1093072549.866241" text="test message"/>

The dlsd acquisition process stores the messages in the subdirectory messages of the
job directory (see section 3.6). Just like the measured data, messages are organised
in chunks. The chunk concept, however, has somewhat been modified here: Chunks
that contain messages are not continuous in terms of time and are created only to
allow simpler deletion of certain time spans from messages later on.

2.2.6. Signal processing

The following signals are processed by the dlsd acquisition process:

SIGINT/SIGTERM The acquisition process is to be terminated. Hereupon, it will
immediately terminate the connection to the data source and save the data
remaining in the memory to the hard disc. This may take a few seconds, as
possibly a lot of files needs to be written. If no error occurs in the process, the
process will quit with a return value of 0.

SIGHUP When receiving this signal, the acquisition process must newly read in its
specification data. Subsequently, it will check at once, whether - according to
the new specifications - it must continue to acquire data at all. If not, it will
initiate the termination as is done with SIGINT or SIGTERM. Otherwise, it
will send potentially changed specifications to the data source and continue to
acquire data after confirmation (see subsection 2.2.3) under the new conditions.

SIGCHLD A “clean-up process” (see subsection 2.2.4) has quit. This will only be
registered via the syslogd .

SIGSEGV and others Treatment as in the parent process (see subsection 2.1.3).

11

2. The DLS daemon (dlsd)

12

3. The DLS data directory

All persistent data of the DLS system are organised in DLS data directories . The
basic structure is shown in Figure 3.1.

spool

watchdog

logging

id_sequence

/vol/dls_data

job<ID>

dlsd.pid

job.xml

dlsd.pid

*

channel.xml

chunk.xml

channel<INDEX>

level<LEVEL>

data_<META−TYP>.idx

data<TIMESTAMP>_<META−TYP>.idx

messages

messages

messages.idx

*

*

*

*

*

*

chunk<TIMESTAMP>

data<TIMESTAMP>_<META−TYP>

chunk<TIMESTAMP>

* R
e
p
e
a
t a

s
 m

a
n
y
 tim

e
s
 a

s
 n

e
e
d
e
d

Figure 3.1.: Structure of the DLS data directory

13

3. The DLS data directory

3.1. Root directory

The root directory is the topmost directory level within the DLS data directory. Most
of the files contained here belong to the dlsd parent process. In addition, the root
directory comprises all job directories (see section 3.2).

Files and subdirectories in the root directory:

id sequence This file contains the next free job ID in the form of an ASCII-coded
digit sequence. This is required by the DLS Manager when a new job is to be
created. The DLS Manager reads the ID, uses it for the new job, increases it
by 1 and writes the new ID back to the file.

dlsd.pid This is the PIDfile of the dlsd parent process (see Appendix C). It is auto-
matically created at runtime and indicates that a dlsd parent process is running.

jobXXX Each job directory is available in the DLS root directory. The name is always
job, followed by the job ID. See section 3.2.

spool This is the spooling directory of the dlsd parent process. A description is given
in subsection 2.1.2.

3.2. Job directories

During on-going operation, every job directory (job<ID>) is processed by a dedicated
dlsd acquisition process. The latter reads its specifications from there and also writes
the acquired data there.

Files and subdirectories in a job directory:

job.xml The central specifications file for a job. It contains job and channel speci-
fications. If it is edited while the pertaining acquisition process is running, a
spooling command (see subsection 2.1.2) must be generated in order to have the
process adopt the new specifications. The DLS Manager will automatically do
this.

The specifications file in XML format contains the following information (order
being compulsory!):

<dlsjob >

<description text="description "/>

<state name="(running| paused) "/>

<source address ="IP address or host name "/>

<quota size="data quota " time="time quota "/>

<trigger parameter ="trigger parameter "/>

14

3.3. Channel directories

<channels >

<channel name="channel name " ←↩
frequency ="sampling frequency " ←↩
block_size ="block size " ←↩
meta_mask ="meta mask " ←↩
meta_reduction ="meta reduction ratio " ←↩
format ="compression format " ←↩
mdct_block_size ="MDCT block size " ←↩
mdct_accuracy ="MDCT accuracy " ←↩
type="data type "/>

</channels >

</dlsjob >

The attributes mdct block size and mdct accuracy will only be required when
the compression format is based on the MDCT (see section 6.2).

The specifications can be edited with the DLS Manager. The individual param-
eters are described in section 4.2 and section 4.5.

watchdog and logging These are two empty files used for the DLS Manager’s mon-
itoring of the dlsd acquisition processes. If an acquisition process is running for
the job directory, it will change the time stamp of the watchdog file every second.
If the process is simultaneously acquiring data, it will likewise proceed with the
logging file. The DLS Manager checks the time stamps of these files in regular
intervals, will thus receive information about the condition of the acquisition
process and will thus be able to display it to the user.

dlsd.pid This is the PIDfile of the dlsd acquisition process (see Appendix C). It is
automatically created at runtime and indicates that a dlsd acquisition process
is running.

channelXXX The acquired data continue to be organised in channels that have their
own channel directory each (see section 3.3). The index in the name of the
channel directory corresponds to the channel index that the <rk> command
has returned when it reads out all the channels of the data source during the
starting process of the dlsd parent process (see subsection 2.2.3).

messages Every acquisition process stores the messages, which it has received from
the data source during the data acquisition, to this directory. If it does not
yet exist, the process will create it when required. Just like the measured data,
messages are organised in chunks. See section 3.6.

3.3. Channel directories

All the data that have been acquired for a certain channel are filed in the channel
directories (channel<INDEX>). A channel directory is permanently assigned to a

15

3. The DLS data directory

specific channel of the data source. For the description of the channel’s properties,
there is the file channels.xml with the following contents:

<dlschannel >

<channel name="channel name " index="Index " ←↩
unit="unit " type="Datentyp "/>

</dlschannel >

This file serves not only for the description of the data in the chunk directories but
will also be checked by the dlsd acquisition process each time a new data acquisition
is to be made in a channel directory. This shall take place only if the channel data
(name, index, unit and type) have not changed.

3.4. Chunk directories

The acquired data of a channel are organised in chunks (chunk<TIME>). A chunk
is a completely acquired series of data which were acquired with the same channel
specification as from a certain point in time. The time stamp in the directory is the
time stamp of the first data value in the chunk. For the description of the chunk’s
properties, there is the file chunk.xml with the following contents:

<dlschunk >

<chunk sample_frequency ="Abtastrate " ←↩
block_size ="Datenblockgröße " ←↩
meta_mask ="Meta-Maske " ←↩
meta_reduction ="Meta-Untersetzung " ←↩
format ="Kompressionsformat " ←↩
mdct_block_size ="MDCT-Blockgröße " ←↩
mdct_accuracy ="MDCT-Genauigkeit " ←↩
architecture ="Architektur (Endianess) "/>

</dlschunk >

The mdct * -Attribute attributes will exist only if the compression format is based on
the MDCT (see section 6.2).

In each chunk directory the data are accommodated in directories that correspond to
their meta level (generic data in the level0 directory, data of the first meta level in
the level1 directory etc.).

3.5. Data directories

The data directories (level<meta level>), which simultaneously represent the sorting
of the data according to the respective meta level, are arranged at the bottom of the

16

3.5. Data directories

directory hierarchy. The data files and the associated index files are provided here.

Data files Data files contain the acquired measured data. These are created sepa-
rately for each meta type. Therefore, the file has the following naming convention:

data<TIMESTAMP> <METATYPE>

The time stamp in the file name is the time stamp of the first data value in the first
block in this file.

In the level0 directory the meta type is always gen (“generic”).

Data files have a simple XML structure. Each data block appears as a <d>-Tag.
This contains the time stamp of the first value in the block as attribute t (“time”),
the number of compressed data values as attribute s (“size”) and the coded data as
attribute d(“data”).

Data files have a defined maximum size. As soon as the dlsd acquisition process
exceeded that size by adding the next block, it would first create a new data file.

The facts which parameters have ultimately been used for the data acquisition and
in which way the compression has taken place can only be determined together with
the higher-ranking description files chunk.xml and channel.xml.

Index files Index files are binary files with a fixed entry length, which are always
assigned to a data file. They provide information that can very quickly be read out,
about the data blocks in the corresponding data file. The naming convention is similar
to that of the data file, but with an additional extension:

data<TIMESTAMP> <METATYPE>.idx

The entries in the index file will always correspond to a block in the data file. The
structure of an entry is shown in Figure 3.2.

Timestamp of the first value
8 Byte (long long) 8 Byte (long long) 4 Byte (unsigned int)

Timestamp of the last value Tag offset

Figure 3.2.: Entry of an index file

Each entry is 20 bytes long. The first 8 bytes correspond to the time stamp of the
first data value in the respective block in microseconds, which has been converted into
a long long int. The next 8 bytes correspond in the same way to the time stamp of
the last data value in the block. The last 4 bytes are the unsigned int-coded offset
address of the block tag in the data file, i. e. the position of the initial < character.

17

3. The DLS data directory

Global index files “Global” index files facilitate the determination of the time spans
of the data of individual data files of a certain meta type. Their naming convention
is:

data <METATYPE>.idx

An entry in a global index file will always correspond to a data file of the same meta
type. The structure of an entry is shown in Figure 3.3.

Timestamp of the first value Timestamp of the last value
8 Byte (long long) 8 Byte (long long)

Figure 3.3.: Entry of a global index file

An entry in a global index file is always 16 bytes long. The first 8 bytes correspond to
the time stamp of the first data value in the data file in microseconds as a long long
int, the last 8 bytes correspond to the last data value.

If data are just being entered in a data file, the time stamp of the corresponding
(latest) entry in the global index file will be 0. In this case the searched time stamp
must be ascertained by reading out the latest entry in the corresponding data index
file. As soon as the data acquisition in the data file is terminated, the second time
stamp will be given the “correct” value.

3.6. Messages directory

Messages from the data source are stored in the messages directory (messages) in
separated chunks. All the chunk directories are designated with

chunk<TIMESTAMP>,

with the time stamp corresponding to that of the first message recorded in this direc-
tory. Within the directories there are always only two files: the message file and the
associated message index file.

Message files A file with messages from the data source is always denominated as
messages. The messages of the data source are stored unchanged in this file, so that
this contains only single SML tags that correspond to the respective messages (see
subsection 2.2.5).

Message index files The index file messages.idx belongs to the message file proper
and serves to enable the quick loading of messages of a certain time range without
having to read in the whole message file.

An entry in a message index file will always correspond to a message in the message
file. The structure of an entry is shown in Figure 3.4.

18

3.6. Messages directory

Tag offset
4 Byte (unsigned int)8 Byte (long long)

Timestamp of the message

Figure 3.4.: Entry of a message index file

19

3. The DLS data directory

20

4. The DLS Manager

The DLS Manager is the graphical user interface for the configuration of the mea-
surement jobs in a DLS data directory. Furthermore, it serves for the control and
monitoring of the running acquisition processes.

The DLS Manager is called with the command dls ctl.

Same as for the dlsd, in the command line, with the parameter -d, this tool can be
notified of the DLS data directory, in which it is to work (see section D.4).

When the program is started the DLS Manager automatically performs some checks:

• If the DLS data directory involved is still empty, the user will be asked whether
a valid DLS data directory structure is to be created in the directory.

• If for the DLS data directory involved an instance of the dlsd is not yet running,
the user will be asked whether an instance is to be started.

4.1. Main dialog

Figure 4.1 shows the main window of the DLS Manager, which will be displayed once
the program is started.

Figure 4.1.: Main dialog of the DLS Manager

21

4. The DLS Manager

4.1.1. Display features

In the main dialog the individual measurement jobs are displayed as lines in a table.
The following information is made available in the columns:

Job ID and designation The designation of the job is arbitrary and can be changed
at any time. The ID is a fixed number automatically chosen when creating the
job. All data of a job are stored in the DLS data directory in subdirectory
job<ID>.

Source The name or the IP address of the server that is to be used as the data source.
On this an I&C server must be accessible via the TCP port 2345. The source
can be chosen only when creating the job and cannot be changed later on.

Status The job status selected by the user: “started”, when the data acquisition is
to run, otherwise “stopped”.

Trigger . The parameter of the data source that is to serve the acquisition process
as trigger parameter. Where a trigger parameter has been selected, data will be
acquired only, if this has the value 1.

Process Indicates whether an acquisition process is currently running for this job. Is
not displayed when the job has been stopped.

Acquisition If a trigger has been configured, here you can see, whether this is cur-
rently switched on. Without trigger, the data acquisition must always run when
the acquisition process is running.

4.1.2. Interaction features

• The lines containing the individual jobs can be marked with the mouse cursor.

• When a job has been marked, a button to start or stop the data acquisition will
be displayed.

• A double click on a job line opens the dialog for editing the respective job (see
section 4.3).

• The button “Close” terminates the program.

4.2. The “Create job” and “Change job” dialogs

Figure 4.2 shows the dialog for creating or changing a measurement job. It is displayed
after clicking the buttons “New job” in the main dialog or “Change” in the “Edit job”.
dialog. They differ in that the data source can only be changed when creating a job.

22

4.2. The “Create job” and “Change job” dialogs

Figure 4.2.: Dialog for creating or changing a measurement job

4.2.1. Display features

The dialog mask enables the user to indicate several particulars regarding the mea-
surement job:

Description This is an arbitrary name for the measurement job, which is merely used
for recognition purposes.

Source The address of the data source. This may be a host name or an IP address.
If a host name is used, it must be ensured that at runtime it can be resolved
by the dlsd into an IP address. The specified host must provide a data source
for the data acquisition and for the addition of channels via the corresponding
dialog (see section 4.4).

Trigger The name of the parameter that is to serve as the trigger parameter. If a
trigger parametermeter has been selected here, data will later be acquired only,
if this has the value 1. If this input field is left empty, no trigger will be used.

Time quota The time quota (duration of the period of time to be maximally stored
for acquired data, see subsection 2.2.4) can be set here as a combination of an
(integer) value and the associated time unit. No entry in the input field for the
value means that no time quota is to be used.

Data quota Here, the data quota (amount of storage space to be maximally used
and to be reserved in the file system for the acquired data) can also be indicated
as a combination of an integer and the associated unit of size. Again, no entry
means that no data quota is to be used.

4.2.2. Interaction features

• Clicking the “OK” button (or pressing the Enter key) will verify the specified
data. If these contain errors, a window with the exact error messages will be

23

4. The DLS Manager

displayed. Otherwise, the data will be accepted and the dialog closed. If a
dlsd acquisition process is running, it will be requested to take over the new
specifications.

• If the “Cancel” button is clicked, the specified data will be discarded and the
dialog closed.

4.3. The “Edit job” dialog

Figure 4.3 shows the dialog for editing a job, which will be displayed in the main
dialog window after having double-clicked on a job.

Figure 4.3.: Dialog for editing a job

4.3.1. Display features

Selected master data of the job are displayed in the top section. Below there is the
list of the channels to be included with the key parameters. These are in particular:

Channel The name of the channel to be included

Type The channel type. A channel can either be of an integer or a floating-point
type (see Appendix B).

Scanning frequency The frequency, with which the individual measured values are
to be stored.

Block size The number of measured values that are to be jointly compressed and
saved in one unit.

Format The compression method (see chapter 6).

24

4.4. The “Add channels” dialog

4.3.2. Interaction features

• The dialog for editing the job’s master data can be called up by clicking the
“Change” button.

• The channel lines of the table can be marked with the mouse cursor. It will
then be possible to use the “Edit channels” and “Delete channels” buttons.

• By pressing the Shift or Ctrl key you may also select several channels at a time,
which will be simultaneously editable and deletable as well.

• The specifications for one or more highlighted channels can be edited by clicking
the “Edit channels.” buttons in the following dialog. Special conditions apply,
however, for the editing of several channels (see subsection 4.5.3).

• A double click on a channel line will also open the dialog for editing the speci-
fications of the respective channel.

• If the “Delete channels” button is clicked, all highlighted channels will be re-
moved from the specifications. Any data acquired, however, will remain avail-
able.

• When the “Add channels” button is clicked, the dialog for the adding of channel
specifications will open (see section 4.4).

• The “Close” button terminates the dialog and returns to the main dialog.

4.4. The “Add channels” dialog

Upon clicking the “Add channels” button in the dialog for editing a job, a dialog
window will open as shown in Figure 4.4. At the same time it is tried to establish a
TCP connection to the data source to retrieve its channels.

4.4.1. Display features

• While it is tried to establish the connection with the data source, a “Receiving
channels. . . ”. message is displayed. If even after a defined waiting time the
connection still fails to be established, a window with the corresponding error
message will appear and the dialog will close.

• If the channel list has successfully been accessed, the individual channels will
be displayed in a table. The channel name, the unit, the maximum sampling
frequency and the channel data type will be shown.

25

4. The DLS Manager

Figure 4.4.: Dialog for adding channel specifications

4.4.2. Interaction features

• The user can use the cursor to select individual channels. By pressing the Ctrl
or Shift key it is possible to select several channels at the same time.

• When the “OK” button is clicked, all selected channels will be added to the list
of the job’s channel specifications. If a certain channel is already available, this
will be shown in a window with the corresponding warning message. The other
channels will be added nevertheless. If changes have been made, a possibly
running dlsd acquisition process will be requested to adopt the new channel
specifications.

• Clicking the “Cancel” button will close the dialog without adding new channel
specifications to the job.

4.5. The “Edit channels” dialog

The dialog for the editing of channel specifications shown in Figure 4.5 will appear
when double clicking on a channel specification in the dialog for the editing of a job,
or after clicking the “Edit channels” button after one or more channels have been
selected.

26

4.5. The “Edit channels” dialog

Figure 4.5.: Dialog for editing channel specifications

4.5.1. Display features

The following input fields are available to the user for a parameterisation of the channel
specification(s):

Sample time The number of values to be stored per second. This frequency must be
an integer divisor of the maximum sampling frequency of the channel concerned.

Block size The number of values compressed and stored in a block. The larger the
block, possibly the better the compression result, but the longer the duration of
the compression process. For an MDCT-based compression the block size must
be an integer multiple of the MDCT block size.

Meta mask This value is currently not editable
The meta mask is a bit mask indicating the types of meta data to be stored.
See subsection 2.2.2 in this respect.

Reduction ratio The meta reduction ratio is the number of data values of a meta
level, from which a new meta value of the next higher level is generated. In
this respect, too, see subsection 2.2.2. This value usually does not require any
adjustment.

Format The compression format, with which the acquired data are compressed prior
to storage. Depending on the compression method used, further parameters
need to be specified.

MDCT block size This parameter must be specified for MDCT-based compression
methods and behaves similar to the block size. See section 6.2.

Accuracy Some non lossless compression methods allow specifying the maximum, ab-
solute error. The error must always be indicated in the unit of the corresponding
channel.

4.5.2. Interaction features

• Clicking the “OK” button will first verify the specified parameters for plausi-
bility. If this fails, a window with the relevant error messages will be displayed.

27

4. The DLS Manager

Otherwise, all specified parameters will be applied to the previously selected
channel specifications, the possibly running dlsd acquisition process will be re-
quested to adopt the new parameters and the dialog will be closed.

• If the “Cancel” button is clicked, the specified data will be discarded and the
dialog closed.

4.5.3. Simultaneous editing of several channel specifications

The dialog for editing the channel specifications (Figure 4.5) can also be used for
editing several channels simultaneously. In this case the following applies:

• When opening the dialog, all parameters which at that time are identical re-
garding all channel specifications to be edited will be displayed in the dialog
mask. In respect of the parameters that are not identical regarding all channel
specifications, the corresponding input fields are left empty.

• Accordingly, after having changed or added a value in the dialog mask, clicking
the “OK” button will affect all previously selected channel specifications.

• If a value field in the mask is empty when clicking “OK”, that value will be
changed for none of the channel specifications. In this case, all previously
selected channels will retain the respective previous value. Thus, it is possible
to change for example only the sampling frequency for a number of channel
specifications.

• The parameters of the compression (format, MDCT block size and accuracy) are
one unit in this regard. This means that initially the compression parameters
will be displayed only, if they are exactly the same for all channel specifications.
Accordingly, the specified compression parameters can also only be edited col-
lectively.

28

5. The DLS View

The DLS View program serves for the simple view of the acquired data of a job. It
is therefore made up of only two dialogs (see Figure 5.1 and Figure 5.3).

5.1. Main dialog

Figure 5.1.: Main dialog of DLS View

5.1.1. Display features

• At the top left corner of the screen there is a selection field where the user can
select the measurement job whose data are to be displayed.

29

5. The DLS View

• On the right-hand side a list of the channels covered by the selected job is
displayed.

• The biggest part of the dialog window is taken up by the data display. Its design
allows to display the data of several channels arranged one above the other on
a common time scale shown on top of the chart. The tick marks appear as
vertical, grey lines in a coordinate system.

• In a small text line at the very bottom of the chart you see the respective time
range presented.

• A small header above each channel contains the channel name, the presented
value range, the number of loaded data blocks and the loaded meta level (see
subsection 2.2.2). Under the header the data are represented in curves. A blue
curve indicates that the data involved are generic data (meta level 0); if a higher
meta level is used for the representation, the respective curve section is green.

• If no data were acquired in a certain time span, this zone of the channel line
concerned is displayed with a yellow background (see Figure 5.2).

• As all channel lines must share the overall height of the display, with an increas-
ing number of channels to be displayed the height of the individual channel lines
decreases. If the height of an individual channel line falls below a defined value,
a scroll bar will appear on the right.

5.1.2. Interaction features

• From the selection list “Job” the user can choose the job whose acquired data
he wants to have displayed. The list of acquired channels will then be updated.

• The user can hide or display individual channels in the data display by ticking
the box in front of the respective channel names in the channel list.

• Clicking on the “All” button will determine and display the entire time range,
in which data have been acquired for the selected channels.

If channels are added or deleted immediately thereafter, the new entire time
range will be determined time and again. Only when the user explicitly selects
another time range to be displayed, such range will be constantly applied even
if channels are added or deleted.

• Clicking on the “Update” button will have all channel data of the selected time
range re-recorded and displayed.

• When clicking on the “Export. . . ” button, the export dialog (see section 5.2)
will open.

30

5.2. The “Export. . . ” dialog

• Through pressing and holding the left mouse button within the data area of the
display the user can select a new time range which will remain marked by two
vertical red lines as long as the mouse button is held down. Their exact points
in time are indicated at the top edge of the chart. When releasing the left mouse
button the new time range will be accepted and the corresponding data loaded.

By the way, when releasing the mouse button the position may well lay outside
the display range, which will then result in a slight extension of the displayed
time span.

• Similarly, by pressing and holding the right mouse button on the display range
the time span presented can be moved. When the mouse button is released, the
new time range is accepted.

• A double click in the data area results in the time range presented being extended
by the factor 2. Before that, it is centred around the point in time just clicked.
If the Shift button is being pressed while double clicking, the factor 10 will be
used for the extension.

• If the data area has the keyboard focus, pressing the Ctrlbutton will draw a
vertical “scan line” at the point in time to which the mouse cursor points (see
Figure 5.2). If this line crosses a displayed curve, the data value at the point of
intersection will be displayed.

As the scan line is not infinitely narrow, possibly many data values will fall in the
area covered by it. In this case the entire value area of the values that are present
“under” the scan line will be marked by two horizontal lines corresponding to
the minimum and maximum (see 3rd channel in Figure 5.2).

5.2. The “Export. . . ” dialog

5.2.1. Display features

• The upper part of the dialog (see Figure 5.3) shows the number of selected
channels and the selected time range. The export always includes the data
shown in the currently selected view of the main dialog.

• The progress bar in the lower part will later show the export progress.

5.2.2. Interaction features

• In the centre part of the dialog (see Figure 5.3) check boxes allow selecting
the export formats. It is definitely possible to simultaneously export several
formats.

31

5. The DLS View

Figure 5.2.: Scan lines with the Ctrlbutton held down

• A click on the “Export” button starts the data export. If the environment
variable $DLS EXPORT is set, the data will be written into the corresponding
directory. Otherwise, the current directory will be used. To prevent an over-
writing of any data when exporting, a subdirectory will always be created to
accommodate the data files. The name of this subdirectory is determined by
the environment variable $DLS EXPORT FMT , which permits wildcards ac-
cording to the conventions of the c function strftime(). See man 3 strftime for
a list. If the environment variable has not been set, a default directory name
dls-export-%Y-%m-%d-%H-%M-%S is assumed.

• The “Cancel” button interrupts the export and closes the dialog.

32

5.2. The “Export. . . ” dialog

Figure 5.3.: Export dialog of DLS View

33

5. The DLS View

34

6. Compression methods

The compression of the measured data received from the data source serves to reduce
the required storage space in the file system. It is always done block-wise (i. e. a
certain number of data values is always jointly compressed) with the user being able
to adjust the block size in the channel specifications. A basic distinction is made
between lossless and non lossless compression.

The DLS system supports various compression algorithms. Since most of the algo-
rithms have binary data as output, these will be coded in Base64 before being stored
in the data files. Although this results in an expansion of the required storage space
by one third, the advantage is that the compressed data will be available in “print-
able” characters and can thus be coded in XML. Therefore, all compression methods
of the DLS have the suffix /Base64.

The following compression methods are supported by the DLS:

ZLib/Base64 A simple but efficient compression method offering a lossless compres-
sion. See section 6.1.

MDCT/ZLib/Base64 An enhanced compression method that processes the data by
a transformation and a quantisation and then only compresses them. See sec-
tion 6.2.

6.1. Compression with the ZLib

Compression method: ZLib/Base64
Compressible data types: all.

The “ZLib” (http://www.gzip.org/zlib) library provides functions for the lossless
compression of data. The dlsd acquisition process uses these functions in the com-
pression method ZLib/Base64. Moreover, the ZLib algorithm is used for support in
the subsequent processes to further compress the data already processed.

As the ZLib provides binary data, these will then be stored in all processes coded in
Base64.

35

http://www.gzip.org/zlib

6. Compression methods

6.2. Compression with the MDCT

Compression method: MDCT/ZLib/Base64
Compressible data types: TFLT, TDBL

The compression method MDCT (“modified, discrete cosinus transformation”) of the
DLS actually is a hybrid process in which the data are first transformed with the
MDCT, then quantised and finally bit-wise transposed, in order to render the following
compression with the ZLib more effectively. Here, the intention is to compress the
measured data lossy with limited error.

6.2.1. MDCT

The MDCT is a kind of discrete equivalent to the Fourier transformation method that
transforms a signal into the corresponding frequency domain which again produces
the original signal when overlaid.

While the “normal” DCT is based on the principle that n values are transformed
into n coefficients, from which the original signal can then be completely recovered,
the “modified” DCT always transforms n values into n

2
coefficients which as such are

an incomplete representation of the original signal. However, as the transformation
is performed with 50% overlapping, the original signal can be recovered by a re-
overlapping of two successive, re-transformed sequences of coefficients. This method
is presented in Figure 6.1.

n/2 coefficients n/2 coefficients n/2 coefficients

n/2 coefficients n/2 coefficients n/2 coefficients

t

n values n values n values

n values n values n values

Recoverable area from dashed coefficients

Figure 6.1.: Modified, discrete cosinus transformation

This modified DCT is supplemented by the overlaying of the values to be transformed
by means of a window function that gives a lower weighting to the values at the
margins. It is thus prevented that the different errors on the marginal areas of the
single transformations lead to “artefacts” and the original signal can be seamlessly
recovered.

36

6.2. Compression with the MDCT

6.2.2. Quantisation

The coefficients ascertained by the MDCT are subjected to an integer quantisation.
Here, a bisection method serves to decide how many bits can minimally be taken for
quantisation without the maximum error becoming too large when re-transforming.
The quantisation method provides not only the coefficients quantised to n bits but also
the floating-point scaling factor required for the recovery of the original coefficient.

As the maximum error cannot exactly be determined for an individual, inverse MDCT,
it is estimated by half of the given error. When two sequences of re-transformed
coefficients are overlaid for the recovery of the original signal, the given error cannot
be exceeded as long as the absolute error in both partial signals does not exceed half
of the maximum total error.

Signals from technical processes are frequently most suitable for a transformation by
MDCT because in most cases they result from overlaid, harmonic vibrations. This
means that the high-frequency portions of the relevant coefficients are often not very
pronounced and can largely be adapted by the quantisation. This will lead to a good
compressibility later on.

6.2.3. Transposition

The transposition is needed because the compression method ZLib works byte-wise
and in most cases cannot recognise similar bit patterns. So, the individual bits of the
quantised coefficients are re-sorted in the memory. For this purpose the coefficients
are first of all separated from their algebraic signs. The sign bits are separately stored
before the coefficient bits. This is first followed by all MSBs (“most significant bits”)
of the coefficients and last by all LSBs (“least significant bits”). Due to the mostly
very small coefficients of the higher-frequencys this results in a lot of zero bytes that
can easily be compressed.

Accordingly, a compressed MDCT block consists of the scaling factor of the quantised
coefficients (4 byte, or 8 bytes), the quantity q of quantisation bits used (1 byte), n
sign bits and finally q · (n− 1) coefficient bits.

6.2.4. MDCT via FFT (Fast Fourier Transform)

Marios Athineos1 has developed a method to reduce an MDCT via n values to a
Fourier transformationformation via n

4
values. The DLS employs this method in com-

bination with the FFTW3 library (see Appendix A) in order to reduce the computa-
tional effort considerably. This library combines efficient algorithms for the calculation
of the Fourier transform with the use of processor extensions such as MMX or DDE.

1marios@ee.columbia.edu, http://www.ee.columbia.edu/~marios, Columbia University

37

http://www.ee.columbia.edu/~marios

6. Compression methods

6.3. Compression through quantisation

Compression method: Quant/ZLib/Base64
Compressible data types: TFLT, TDBL

This loss-afflicted compression method subjects the data values to be compressed to
an absolute quantisation, differentiates them and stores them in transposed form.
This method prepares the “raw data” so that the subsequent compression with the
ZLib is even more effective.

6.3.1. Quantisation

During quantisation the individual (floating-point) values are mapped via a scaling
factor on a limited interval of the natural numbers. A compression is achieved by
trying to keep this interval as small as possible in order to be able to code the quantised
values with a few bits. However, this is only done to the extent that the error thus
produced remains under a certain limit specified by the user.

6.3.2. Differentiation

In addition, the quantised values are differentiated to have linear signal waveforms
become more harmonised in the coding so that the ZLib algorithm can compress the
data better. To this end, at the beginning of the compressed data set the (integer)
offset is stored and from there onwards always only the difference from value to value
is stored.

6.3.3. Transposition

The transposition is done for the same reasons as in the MDCT/ZLib/Base64
method. See subsection 6.2.3 in this respect.

38

A. Installation of the DLS

A.1. System requirements

The DLS has largely been implemented in the programming language C++. For
compilation and functioning it requires a Linux operating system.

The following software must be installed for compilation and at runtime:

• The syslogd , which is usually delivered with every Linux distribution, is used
for the recording of the messages being produced during runtime.

• For the compilation of the graphical user interfaces DLS Manager and DLS
View it is additionally necessary to have the GUI library FLTK in version 1.1
available, which can be downloaded from the FLTK website http://www.fltk.

org. The library must have been compiled with support for multithreading1

(configure switch --enable-threads).

• The ZLib is required for the compression. This is included in almost every Linux
distribution. In case of need it can be downloaded from http://www.gzip.org/

zlib and installed.

• The FFTW3 library is also required for the compression. This enables the DLS
to compute the Fourier transforms required for the MDCT compression. The
source of supply for the library is http://www.fftw.org/download.html.

• For the DLS Manager and for FLTK you will need the pthreads library.

A.2. Installation

After having copied it from the EtherLab R©-CD or downloading it from the EtherLab R©

homepage http://etherlab.org, you can unpack the DLS archive:

$ tar xjf dls-1.0-rXXX.tar.bz2

$ cd dls-1.0-rXXX.tar.bz2

1Unfortunately some Linux distributions only include a packet without multithreading so that the
FLTK library must be compiled by oneself.

39

http://www.fltk.org
http://www.fltk.org
http://www.gzip.org/zlib
http://www.gzip.org/zlib
http://www.fftw.org/download.html
http://etherlab.org

A. Installation of the DLS

Now the source code can be configured and compiled with the commands men-
tioned below. The configure command knows the parameters --with-fltk-dir

and --with-fftw3-dir to specify the (deviating) installation directories of the cor-
responding libraries. The default installation directory of the DLS is /opt/etherlab.
A different directory can be specified with the parameter --prefix.

$./configure

$ make

A subsequent calling (as root) of

make install

will install all necessary executables, scripts and template configuration files.

A.3. How to set up DLS as a service

If the DLS is to be set up as a service, the init script, the sysconfig file and the profile
script must be copied into directories that are suitable for distribution. The following
commands are suitable for a SUSE Linux distribution but may slightly differ for other
distributions:

cd /opt/etherlab

cp etc/init.d/dls /etc/init.d/dls

cp etc/sysconfig/dls /etc/sysconfig/dls

cp etc/profile.d/dls /etc/profile.d/dls

insserv dls

The configuration is made by adjusting the sysconfig file /etc/sysconfig/dls. The
relevant configuration variables are documented in the file, will later be exported as
a environment variable by a profile script and thus be available to all users.

The DLS data directory will automatically be created when the DLS Manager is
started. For this purpose either the environment variable $DLS DIR must be set or
the directory to be initialised must be transferred by means of parameter -d. If the
specified directory is not yet a DLS data directory, the user will be asked whether he
wishes to initialise it as such.

40

B. Data types

Table B.1 shows all previously supported channel data types and the respective pos-
sible compression methods.

Table B.1.: Supported channel data types

Typ Description Compression
TCHAR 1 byte integer (with sign) ZLib/Base64
TUCHAR 1 byte integer (without sign) ZLib/Base64
TINT 4 bytes integer (with sign) ZLib/Base64
TUINT 4 bytes integer (without sign) ZLib/Base64
TLINT 4 bytes integer (with sign) ZLib/Base64
TULINT 4 bytes integer (without sign) ZLib/Base64
TFLT 4 bytes floating point ZLib/Base64,

MDCT/ZLib/Base64,
Quant/ZLib/Base64

TDBL 8 bytes floating point ZLib/Base64,
MDCT/ZLib/Base64,
Quant/ZLib/Base64

41

B. Data types

42

C. PID files

At several points the DLS system uses so-called PID files, a mechanism that is to
prevent that several processes will run for one concrete task. A PID file contains the
ASCII -coded process ID (PID) of the currently running process. After each process
start it is therefore determined whether the corresponding file and possibly a process
with the specified PID already exist. If both exist, a new process must not be started.
The process must immediately close itself instead. If no other instance exists, the
newly started process may continue to run and create a new PID file. Prior to that,
an outdated PID file (i. e. the specified process no longer exists) can be deleted.

43

C. PID files

44

D. Command-line parameters

D.1. dlsd

dlsd 1.4.0- rc2 revision de0a3e76b9ae

Usage: dlsd [OPTIONS]

-d <dir > Set DLS data directory.

-u <user > Switch to <user >.

-n <number > Set maximal number of open files.

-k Do not detach from console.

-w <seconds > Wait time before restarting logging

process after an error. Default is 30.

-b Do not bind to network socket.

-p <port > Listen port or service name. Default is 53584.

-r Read -only mode (no data logging).

-h Show this help.

D.2. Init-Script

(The path may differ depending on the Linux distribution.)

USAGE: /etc/init.d/dls {start|stop|restart|status}

D.3. dls status

Call: dls_status [OPTIONS]

Options:

-d [directory] DLS data directory

-h Show this help

D.4. dls ctl

The DLS Manager is described in chapter 4.

45

D. Command-line parameters

dls_ctl 1.4.0- rc2 revision de0a3e76b9ae

Call: dls_ctl [OPTIONS]

-d [directory] DLS data directory

-u [user] DLS user

-h Show this help

D.5. dls view

dls_view 1.4.0 -rc2 revision de0a3e76b9ae

Call: dls_view [OPTIONS]

-d [directory] DLS data directory

-h Show this help

D.6. dls

Usage: dls COMMAND [OPTIONS]

Commands:

list - List available chunks.

export - Export collected data.

help - Print this help.

Enter "dls COMMAND -h" for command -specific help.

D.6.1. dls list

Usage: 1. dls list [OPTIONS]

2. dls list -j JOB [OPTIONS]

Description:

1. Lists all available jobs.

2. Lists chunks in the specified job.

Options:

-d DIR Specify DLS data directory.

-j JOB Specify job ID.

-h Print this help.

D.6.2. dls export

dls 1.4.0 revision 1.4.0.90. ge03e73f

Usage: dls export [OPTIONS]

Options:

46

D.7. dls quota

-d DIR DLS data directory. Default: $DLS_DIR

-o DIR Output directory. Default: $DLS_EXPORT_DIR or "."

-f NAMEFMT Naming format for export directory.

See strftime (3).

Default: $DLS_EXPORT_FMT or "dls -export -%Y-%m-%d-%H-%M-%S"

-a Enable ASCII exporter

-m Enable MATLAB4 exporter

-5 Enable HDF5 exporter

-j ID Job to export (MANDATORY)

-c CHANNELS Indices of channels to export (see below).

Default: All channels

-p CHANNEL Path of one channel to export (see

below). This option may appear

multiple times. Default: All channels.

-s TIMESTAMP Start time in local timezone (see below).

Default: Start of recording

-e TIMESTAMP End time in local timezone (see below).

Default: End of recording

-n DECIMATION Export every n’th value.

-g Export messages.

-l LANGUAGE 2-character language code for messages.

-q Be quiet (no progress bar)

-t Trim exported data to given start and end times (-s and -e

required). Otherwise overlaps may occur. Default: no.

-r Exported times shall be relative to start time (or start of

data , if no start time given).

-h Print this help

CHANNELS is a comma -separated list of channel indices.

Use the minus sign to specify ranges.

Examples: "2,4,9", "1-20", "2 ,4 ,13 -15 ,42".

CHANNEL is a signal name , optionally prefixed with

’FILE:’, where FILE is the name of the exported

channel data file. If FILE is empty , or there is no

colon found , files are named according to the channel

indices.

TIMESTAMP is a broken -down time with microsecond resolution:

YYYY[-MM[-DD[-HH[-MM[-SS[-UUUUUU]]]]]] or

YYYY[-MM[-SS[HH[:MM[:SS[. UUUUUU]]]]]].

Examples: "2006 -08" , "2005 -08 -15 13:14:58.896366"

D.7. dls quota

Call: dls_quota [OPTIONS]

-d [directory] DLS data directory

-i [seconds] Verification interval (0 = single check)

47

D. Command-line parameters

-k Not a daemon

-h Show this help

48

Index

$DLS DIR, 2, 40
$DLS EXPORT, 32
$DLS EXPORT FMT, 32

architecture, 3

C++, 39
channel

data type, 1
data types, 41
definition, 1
sampling frequency, 1
unit, 1

channel specification, 1
chunk, 7, 10, 16

Definition, 6
clean-up process, 10, 11
Compression, 35

data
generic, 6

data block, 6
data source

Definition, 1
DLS, 1
dls (Tool)

Command line parameters, 46
dls (tool), 2
DLS data directory, 2, 3, 13
DLS Manager, 2, 21, 39

Command line parameters, 45
DLS View, 2, 39

Command line parameters, 46
DLS View viewer program, 29
dls quota, 10

Command line parameters, 47
dls status, 2

Command line parameters, 45
dlsd, 3

acquisition process, 5
Command line parameters, 45
parent process, 3

endianness, 7

FLTK, 39

Init Script, 2
Init-Script

Command line parameters, 45
Installation, 39

Linux, 39

MDCT, 36
measurement job, 2–5, 21, 22

definition, 1
messages, 10
meta data, 6
meta mask, 7
meta reduction ratio, 6
meta types, 6

PID files, 3, 14, 15, 43

quantisation, 38
quota, 9

signal processing, 5, 11
Spooling, 4
sysconfig file, 2
syslogd, 5, 11, 39

tools, 2

XML, 7

ZLib, 35

49

Index

50

List of Figures

2.1. Architecture . 3
2.2. Compliance with the time quota . 10

3.1. Structure of the DLS data directory . 13
3.2. Entry of an index file . 17
3.3. Entry of a global index file . 18
3.4. Entry of a message index file . 19

4.1. Main dialog of the DLS Manager . 21
4.2. Dialog for creating or changing a measurement job 23
4.3. Dialog for editing a job . 24
4.4. Dialog for adding channel specifications 26
4.5. Dialog for editing channel specifications 27

5.1. Main dialog of DLS View . 29
5.2. Scan lines with the Ctrlbutton held down 32
5.3. Export dialog of DLS View . 33

6.1. Modified, discrete cosinus transformation 36

51

List of Figures

52

List of Tables

B.1. Supported channel data types . 41

53

	General
	Principles of data acquisition
	Measurement jobs
	Data storage
	Tools

	The DLS daemon (dlsd)
	The dlsd parent process
	Behaviour of the dlsd parent process
	Spooling
	Signal processing

	The dlsd acquisition process
	Behaviour of the acquisition process
	Generation of meta data
	Communication with the data source
	Limitation of the data volume (quota)
	Messages from the data source
	Signal processing

	The DLS data directory
	Root directory
	Job directories
	Channel directories
	Chunk directories
	Data directories
	Messages directory

	The DLS Manager
	Main dialog
	Display features
	Interaction features

	The ``Create job'' and ``Change job'' dialogs
	Display features
	Interaction features

	The ``Edit job'' dialog
	Display features
	Interaction features

	The ``Add channels'' dialog
	Display features
	Interaction features

	The ``Edit channels'' dialog
	Display features
	Interaction features
	Simultaneous editing of several channel specifications

	The DLS View
	Main dialog
	Display features
	Interaction features

	The ``Export…'' dialog
	Display features
	Interaction features

	Compression methods
	Compression with the ZLib
	Compression with the MDCT
	MDCT
	Quantisation
	Transposition
	MDCT via FFT (Fast Fourier Transform)

	Compression through quantisation
	Quantisation
	Differentiation
	Transposition

	Installation of the DLS
	System requirements
	Installation
	How to set up DLS as a service

	Data types
	PID files
	Command-line parameters
	dlsd
	Init-Script
	dls_status
	dls_ctl
	dls_view
	dls
	dls list
	dls export

	dls_quota

	Index

